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ELASTIC CONSTANTS FOR SUPERPLASTICALLY

FORMED/DIFFUSION-BONDED CORRUGATED SANDWICH CORE

William L. Ko
Dryden Flight Research Center

INTRODUCTION

Since the first successful application of the sandwich structure in the British
all-wood-constructed Mosquito fighter-bomber aircraft during World War II, the use
of sandwich structural technology (mainly metallic) has become widespread in aero-
space design (for example, for wings, wall panels, webs of beams, tails, and so
forth) .

The typical sandwich structure consists of two relatively thin high strength face
sheets separated by and bonded to a relatively thick, low density, low strength core.
Thus, the sandwich structure is characterized by light weight and high flexural
stiffness.

The most extensively used sandwich structure in aerospace technology is the
honeycomb core sandwich structure, which is usually made of aluminum face sheets
and an aluminum or titanium honeycomb core. In this structure, the honeycomb cell
generatrix is perpendicular to the face sheet and, therefore, the bonding between the
honeycomb core and the face sheet can be achieved only by line contact. This is the
major drawback of this type of sandwich structure, because the line-contact bonding
between the honeycomb cross section and the face sheet can easily lose its bonding
integrity as a result of corrosion.

In recent years, an entirely new process known as superplastic forming with
concurrent diffusion bonding (SPF/DB) has emerged (ref. 1). This process involves
the fabrication of sandwich structures by using superplastic materials, such as the
titanium alloys. The SPF/DB process capitalizes on two natural characteristics of
titanium alloys. The first is superplasticity , which is the ability of a material to
undergo large plastic deformations (up to 1000 percent strain) at high temperatures
without localized thinning (or necking). Second, the alloys have the capacity for



solid state diffusion bonding, which is the joining of the superplastic alloys under
pressure at elevated temperatures without melting or the use of bonding agents.

Utilizing the above two characteristics, an SPF/DB sandwich structure can be
fabricated by diffusion bonding at least three superplastic alloy sheets at selected
areas and then superplastically expanding apart the face sheets by pressure inside
the containment (or die cavity) to give the desired configuration. This new process
eliminates the use of bonding agents, and allows surface-contact bonding instead of
line-contact bonding as in the case of honeycomb sandwich structures. Through this
new technique, a number of new shapes and symmetries for the sandwich core become
possible. These include corrugated cores, truss cores (the limit case of corrugated
core) , dimpled cores, and sine-wave cores (where the axis of corrugation is sinu-
soidal in shape), which are described in reference 1; and egg-carton-like cores,
which have projections that are shaped like hollow truncated cones, hollow truncated
squares, or hexagonal pyramids and are arranged in square or hexagonal arrays
(refs. 2 and 3).

The corrugated, the truss, and the sine-wave cores have relatively high out-of-
plane bending stiffness in the direction of the corrugation axis, but they have very
low out-of-plane bending stiffness in the direction transverse to the corrugation
axis. The egg-carton-like cores have relatively low flexural stiffness in any in-
plane direction. However, if these cores are joined with face sheets, the overall
stiffness of the sandwich structure is greatly enhanced.

In most of the SPF/DB sandwich structures, the sandwich cores are relatively
flexible in the thickness direction, and there is usually a sharp angle at the juncture
of the face sheet and core. Thus, if the swelling modes of vibration (that is, the
oscillation of the two face sheets in opposite directions) should occur under aerospace
service conditions (for example, engine noise, high frequency flutter, and so forth),
these vibration modes could create situations favorable to the formation of fatigue
cracks at the face sheet/core junction sites, resulting in possible damage to the face
sheet/core bond.

In order to study this problem, the assumption that the sandwich core is rigid in
the thickness direction (which is the conventional approach to the analysis of sand-
wich plates) must be abandoned, and the sandwich core must be treated as it is or
as an equivalent homogeneous elastic solid. For the latter case, the effective elastic
constants for the sandwich core are needed.

The purpose of this paper is to present formulae and graphs for evaluating the
effective elastic constants for the SPF/DB corrugated sandwich core. The paper also
discusses the relative structural advantages and disadvantages of this sandwich core
as compared with the conventional honeycomb sandwich core.



SYMBOLS

B nondimensional parameter associated with displacement (8)

one-half of horizontal projected length of circular arcs and straight
diagonal segments of corrugation leg

D bending stiffness per unit width

d one-half of the length of straight diagonal segment of corrugation leg

E modulus of elasticity

F vertical load in sandwich thickness direction, per unit width in x-direction,
concentrated at end points of corrugation leg
length of corrugation flat segment

G shear modulus

H horizontal load (in y-direction), per unit width in x-direction, concentrated
at end points of corrugation leg

hc corrugatgd core thickness (vert?cal distance between upper and lower
corrugation flat segment centerlines) _

L length of one corrugation leg

M bending moment

p one-half of corrugation pitch (or half wave length of corrugation)

R radius of circular arc segments of corrugation leg

s distance measured along corrugation centerline

t thickness

x, ¥y, z Cartesian coordinates

Y effective shear strain of corrugated core in yz-plane

8 displacement

€ strain

o corrugation angle (angle between centerline of straight diagonal segment

and that of corrugation flat segment)



v Poisson ratio

p density
o stress
_F _H . .
T “n Tp averaged shear stress in corrugated core in yz-plane
c
] angle between tangent to corrugation leg centerline and a horizontal line

GEOMETRY OF SANDWICH PLATE

Figure 1 shows an SPF/DB corrugated core sandwich plate. This structure is
formed by diffusion bonding three superplastic alloy sheets (two face sheets and one
core sheet) in selected areas (ref. 2) and then superplastically expanding the
multiple sheet pack inside a die cavity by using gas pressure. This structure is
slightly different from the conventional corrugated core sandwich structure because
the corrugation leg does not have uniform thickness. Because of superplastic expan-
sion, the diagonal segment of the corrugation leg is always thinner than the flat seg-
ment (crest or trough) of the corrugation leg, which has a thickness that is nearly
the preexpansion thickness. Thus, the results given by reference 4, which are for
the corrugation leg of uniform thickness, cannot be used to evaluate the present
structure without considerable modification.

This report analyzes only a symmetric corrugation (that is, a corrugation
symmetric with respect to the middle surface of the sandwich plate). The element of
the corrugation referred to as the corrugation leg is assumed to be made up of
circular arc and straight diagonal segments of thickness tc and of flat segments of

thickness tf (the preexpansion thickness of the core sheet) .

ELASTIC CONSTANTS FOR SUPERPLASTICALLY
FORMED/DIFFUSION-BONDED CORRUGATED SANDWICH CORE

The elastic constants evaluated in the following discussion are the effective (or
averaged) elastic constants for a homogeneous sandwich core equivalant to the actual
sandwich core. This idealization can be adequate when the sandwich plate width
(normal to the corrugation axis) is many times the corrugation pitch. The analysis
assumes that deformation is infinitesimal and that there is no local buckling of the
sandwich structure.



Evaluation of Effective Modulus of Elasticity Ex
and Effective Shear Moduli G__ and G
xy zx

The modulus of elasticity in the x-direction, Ex’ and the shear moduli in the xy-
and zx-planes, ny and G x’ respectively, may be obtained by modifying the results

given in reference 4 by applylng the rule of mixture to account for the nonuniform
thickness of the corrugation leg. These elastic constants can be expressed in the
forms

t
g L _ -g L
E_=E, o7 [+ @ Nt.] = E A (1)
p2t
_ - _._—i 2
ny G, [ft + (2 f)t] G, 7 | 2)
c
hc hctf
sz=Gcs—Z—2;[ftf+(Q’f)tc]=Gc”QT 3)

where the last terms in the equations are for constant volume superplastic deformations

(neglecting small elastic deformations) for which the condition ft f +@-N tc pt 7

holds and

EC modulus of elasticity of the corrugated core material

GC shear modulus of the corrugated core material

P one-half of corrugation pitch (or one-half of a wave length of corrugation)

hc corrugated core thickness (vertical distance between centerlines of the
upper and lower corrugation flat segments)

L length of one corrugation leg

f length of corrugation flat segment

For constant volume superplastic deformations, the superplastic incompressibility
condition used in equations (1), (2), and (3) may be used to relate the two corruga-
tion leg thicknesses t, and tf in the forms

_p-f__b
S €]



or

R

" cose+2h (1 - cos 0)
L= < - 6))
t R .
f 1+2H—[651n6— (1 - cos 6)]
c
where
b one-half of the horizontal projected length of the circular arc and straight
diagonal segments of the corrugation leg
d one-half of the length of the straight diagonal segment of the corrugation
leg
R radius of circular arc segment of the corrugation leg
0 corrugation angle (angle between the centerline of the straight diagonal

segment and the centerline of the corrugation flat segment)

Evaluation of Modulus of Elasticity Ey

Figure 2 shows a free body diagram of a corrugation leg subjected to a horizontal
loading, H (per unit width in the x-direction). Neglecting the Timoshenko beam
shear deformation of the corrugation leg because of its thinness, the total horizontal

displacement of point 0 with respect to point 0", SI;, may be expressed as the

summation of bending and stretching effects. Thus, one can write

L T 9
SH:[ M__<_pids+/ Heos ¥ o5y ds 6
y E I, E t.
0 ci 0 ci
\ RN v v
(Bending) (Stretching)

where the integrals are taken from point 0 to point 0° (that is, one corrugation leg)
and

s distance measured along the corrugation leg centerline
\j angle between tangent to the corrugation leg centerline and a horizontal
line
hc
M =H 5 z’/, bending moment at a cross section of the corrugation leg



z vertical distance from point 0
I. = % t? , moment of inertia of a corrugation leg cross section that is normal
to s and parallel to the x-axis. In the region of the corrugation flat

segment, Ii =1 f; and in the circular arc and straight diagonal segments,

I.=1
i ¢

ti thickness of a corrugation leg. In the region of the corrugation flat
segment, ti =t f; and in the circular arc and straight diagonal segments,
t.,=1
i ‘¢

The (-1) in the bending term of equation (6) indicates that the displacement of
point 0 with respect to point 0 is to the left in figure 2 (ref. 5).

The following relationships between the geometric parameters of the corrugation
will be useful in the process of evaluating equation (6) and others to follow:

hi=ﬁ-§[1—2,§-(1—cose)] N
[ 64 C

f P _o,d _oR

T h Zh cos O 2h sin © (8)
C C (&4 C

b _1/p _ [

=5 i) ®

0 10)

Making use of the equations (7) to (10) in the integration of equation (6), one
obtains

1)



where

3 I
H_2 d> 2 1/ R 1 f ‘¢
B =gz(;—1}] sin" 0 +35({5— 0+ 5~ —
y 3<hC 2<hC 2hc If)
R \? R R
-<-h——> [<2—3h—>(6—sin9)+}—i—sin9(l—cose)]
c c c
I lrt . .a 2..R
+ A=+ 2-— cos” O + — (O + sin O cos 0) (12)
2 h t h h
hctc cf c c

The modulus of elasticity Ey is then given by

H
o _ e
E, = = — (13)
y o
Y
p
~ Ec Icp
Ty @
y c

where oy and Sy are, respectively, the effective stress and the effective strain of

the corrugated core in the y-direction.

Evaluation of Poisson Ratio sz

As illustrated by figure 2, again, the vertical dispacement of point 0 with respect

to point 0” under horizontal loading H, 621, may be written

2 , Q
H_ [ " MCLy o[ Heosy
82 —[ 5T ds / ¢ Sin Y ds 15)
0 ci 0 ci
— ~ J J
(Bending) (Stretching)

where y’ is the horizontal distance from point 0, and the (-1) in the bending term
indicates that the displacement of point 0 with respect to point 0” is downward (ref. 5).



After integration and making use of relationships (7) to (10), equation (15)

becomes
3
Hh
H _ c H
82 “FT Bz (16)
cec
where

3 I 2 2
H_2({d\ _. lcll/p\ _(b
Bz_§<ﬁ—> schos9+21—-[4<h> (h >]
c f c c

+RBJD g_9oBD g _ciney-E a-coso)1-LE 1-cos o)
Aih 7 R R
C c h C c

C

I
S ZE— sin 6 cos O + B sin2 8] amn
2 h h
h't c
cc
The Poisson ratio sz , which is associated with loading in the y-direction
only, is then given by
H
3
zy 8y st 18
Y
p
p %
Hh Ty (19)
h,gH
y

where €, is the average strain in the z-direction of the corrugated core.

Evaluation of Modulus of Elasticity Ez

Figure 3 shows a free body diagram of the corrugation leg subjected to a vertical
(sandwich thickness direction) loading, F, per unit width in the x-direction. The
loading is concentrated at points 0 and 0°. Neglecting the Timoshenko beam shear

deformation, as before, the total vertical displacement, 81:, of point 0 with respect to



point 0" may be written as the summation of the bending and stretching effects.
Thus,

Y , Q .
SI; = ME%)?”— ds + EEE%Y sin ¥ ds (20)
0 ci 0 ci
[\ J o\ 7
Y Y
(Bending) (Stretching)

where the (-1) in the bending term indicates that the movement of point 0 with
respect to point 0” is upward (ref. 5). In this case, M = F(Izl - y’). Taking

equations (7) to (10) in the integration of equation (20), we then obtain

3
Fh
F c F
6z TET Bz 21
cc
where
3 I 3 3
F_2(a\’ 2o 2c|l/p\" (b
c f c c
R[./p\2 Rb R \?
+—12({+—) 6-4—7% (1 -cosB) +{;—) (O - sin O cos 8)
h h 2 h
c c h c
c
Ic d 2 R
+ 2:— sin” ® + — (B - sin 6 cos 6) @2
2 h h
h™t c c
cc
The modulus of elasticity Ez is then given by
F
OZ 5
B8, 7 F (23)
z &
_Z
h
c
E I
=< _C_ (24)
BF phz
z c

where o, is the effective stress in the corrugated core in the z-direction.
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If the vertical loading F is distributed over the corrugation flat segment, then B
in equation (22) will have the form

3 I 2 2
F_2/d 2 1 f elfp\ _7pf  3(f
Bz-§<h—c> cos 9*11?'1‘[(;?) 5,2 " 8ln
C

2 2
+212(2) 0- 48 (1 -cos0) +(R) (6 - sin 6 cos 0)
n R R
c c h c
C
Ier.a .2. R
+ ——]2:— sin” 68 + .— (O - sin O cos 0) (25)
7| %R R
hctc c

It is apparent that the only difference between equations (22) and (25) occurs in
the second term on the right side of each equation (underlined). Equation (25) will
not be used in the subsequent analyses.

Evaluation of Poisson Ratio Vyz

From figure 3, the horizontal displacement, 8§ , of point 0 with respect to point 0

under the concentrated vertical loading, F, is given by

85 ~[ M( l)z [ M cos y ds (26)
0
N V)
(Bendmg) (Stretchmg)

where the (-1) in the integrand of the bending term defines the direction of movement
of point 0 with respect to point 0” to be to the right in figure 3 (ref. 5).

After integration of equation (26), with relationships (7) to (10) taken into ac-
count, it follows that

3

Fh
F c F
&5 = B @21
y EcIc y

where
F __H
By—Bz (28)

11



Then the Poisson ratio v 27 which is associated with loading in the z-direction
only, is given by y

8F
y _px
v =-2Y- (29)
vz €, SF
_Z
h
C
h, Bz
=L Y (30)
p gF
VA

If F is distributed over the corrugation flat segment, then BF in equation (28) is
modified to y
I
h
c

+h51{—b—e—259 (G-Sine)—}—?- (1-0089)[1—51%— (1'0089)]}

i b

ol b
W | =

I
f c({p _
h I.\h
C

B =
y cf

d 3
<ﬁ_> sin 6 cos 6 +
c

h 2
cl| ¢ hc c c

I
€ (2.9 sin 0 cos 0 + & sin® 0 (31)
5 (%R R
hctC c c

All terms are identical to those in equation (17) except the second term on the
right side (underlined). Again, equation (31) will not be used in the subsequent
analyses.

For the concentrated vertical loading, F, the following relationship holds:
vyz sz
= =5 32)
z y

However, the relationship does not apply to a distributed vertical loading.

Evaluation of Shear Modulus Gyz

Figure 4 shows the transverse shear deformation of a corrugated core unit

element 0A0°B subjected to shearing stress, 1, at the four edges of the unit element.
This is equivalent to the application of concentrated vertical and horizontal loads

12



(F = thc and H = tp) at the two ends of the corrugation leg 00°. As a result, point
0 is displaced to position OFH with the vertical and horizontal displacements 82 and
If force F is acting alone, point 0 will move to point OF with the two displacement

&
y
components 8:1; and 81;. Alternatively, if force H is acting alone, point 0 will move to

position OH with displacements SH and SI;. Displacements 8y and 82 may be expressed

H JF '

5 =86 -6 33
y 'y y (33)
_F (H
8§, =8,-8, (34)

and the effective shear strain, vy, can be written

(o]
o]

YERT o (35)
C

Substituting equations (33) and (34) into equation (35) and using equations (11),
(16), (21), and (27), the shear modulus Gyz can then be written in the form

Gy2=’$: n cc (36)
h3<—c BF—zBH+—9-BH>
c\p z z hc hY
H

when tf equals tc , the expressions Bz’ Bz , and BI; in equation (36) reduce respec-

tively to the expressions B3 , B4 , and B6 in reference 4.

Evaluation of Poisson Ratio vyx

The Poisson ratio v x is associated with loading in the x~direction only. The

effective strain of the corrugated core in the x-direction, € is given by

Q

XC
=5 €19
C

m
1l
e P

13



where O is the effective stress in the corrugated core in the x-direction and Orc is

the stress in the corrugation leg in the x-direction. The two stresses O and 0.c 2T€
related as follows:

Qt t
_ c _f T
%% =~ %c 571: [1 g < t;)] (38)

The effective strain in the y-direction of the sandwich core, sy , due to loading in

where equation (1) is used.

the x-direction can be written

2
Sy:-%[ SSCOS\IJdS (39)
0

where & is the strain in the s-direction due to loading in the x-direction and is given
by
E.=V E (40)

where vc is the Poisson ratio of the sandwich core material.

After the integration of equation (39) with equations (37) and (40) taken into
consideration,

c xc
e, =~ (41)

y E,

From equations (37) and (41),
. £

=YY=

Vyx T T E Ve (42)
x

Evaluation of Poisson Ratio ny

The Poisson ratio ny is associated with loading in the y-direction only. Using

equation (11), the effective strain in the corrugated core in the y-direction, ¢_, is
given by Yy

55 H hg B;I
g, =X=__C Y (43)
y P PEI,

14
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The strain in the s-direction, eg , due to loading H is given by

H _H cos
gg = —Ecti _ (44)

The effective strains in the corrugated core, in the x-direction, €, can be obtained
from the integral

1 {1}
xR j €y 98 (45)
0

where € e is the strain in the corrugation leg in the x-direction due to loading H, and

is given by

_ H
€., Ve Eg (46)

Substituting equations (44) and (46) into equation (45) and integrating,

Hv p t
e =---S—|1-L{1-2¢ an
x SZtcEc[ P tf

The Poisson ratio ny is then given by

€
xy =- g; (48)
2 v 1 t
-b o< [1 . 5(1 - t£>] (49)
c hC By f

The Poisson ratios v and v are related as follows:
xy yx

v \% t t
xy o yxl,_f[1-¢€ 1_£<__f> (50)
Ey Ex\: p< tf) ] tc .

If tf equals t, or if the superplastic deformation is constant volume (that is, if the

condition of equation (4) is imposed), then we have the familiar expression

v v
XY =YX (51
E E
y x

15



Evaluation of Poisson Ratio Vzac

The Poisson ratio Vi is associated with loading in the x-direction only. The

effective strain of the corrugated core, in the z-direction, €,, can be written

2
1 .
Sz:—h—[ £g sin V ds (52)
¢Jy

After substituting equations (37) and (40) into equation (52) and integrating,

__ ¢ xc
&, =~ —% (53)

=V (54)

Evaluation of Poisson Ratio sz

The Poisson ratio Voz is associated with loading in the z-direction only. From

equation (21), the corrugated core strain in the z-direction, €, is given by

F F

82 F Bz
& h TREI (55
c c ecce
In addition, the corrugated core strain in the x-direction, €. is expressed as
1 2.
Ex ™" 5‘/ €xc 48 (56
0

where Exc is the strain in the corrugation leg in the x-direction due to loading in

the z-direction, and is given by

T o=v & (57)

16




where EI; is the corrugation leg strain in the s-direction due to loading F, and is

given by

F_ F sin \’/ (58)

£ =
Ecti

Integrating equation (56) in the light of equations (57) and (58), we have
Ve F hc
= TLE, 9)
cc

The Poisson ratio Vs is then given by

€ I Y
- x-_ ¢ _C
Vaz ™ 8 UH F (60)
z ccBZ

The two Poisson ratios Vo and V.., CaN be related by the equation

v \% t
Xz _ zZx _f i

If tf equals tC or if f equals 0, then equation (61) becomes

<
<

xz _ zZx
= 62)
z x

i

For the superplastic incompressible deformation, equation (61) can be reduced to

xz szp f
£ "FE ¢ I (63)

ELASTIC CONSTANTS FOR HONEYCOMB CORE

As shown in figure 5, the honeycomb core is made up of corrugated strips join-
ed together at the corrugation flat segments, with the corrugation axis oriented
normal to the sandwich middle surface. Therefore, by taking the coordinate
system shown in the figure, the results obtained for the previous case can be
applied directly to the honeycomb core if tc is set equal to tf‘

17



EFFECT OF FACE SHEETS ON MODULUS OF ELASTICITY Ez

The following calculations are presented to evaluate the effect of the face sheets
on the stiffness in the z-direction, Ez’ when bonded to the corrugated core. Let

Fz denote the modulus of elasticity in the z-direction when the deformation of the
corrugated core is constrained by the face sheets.

As shown in figure 6, if the corrugation leg is not constrained by the two face
sheets and is subjected to loading H and F, point 0 will move to 0 1 The horizontal

and the vertical components of this displacement are given by equations (27) and
(21), respectively.

3
Fh
F c F
5 = B Q7
y EJI. 7Y
3
Fh
F _ c F
8z—EI Bz C2Y
cc

If the corrugation leg is constrained by the face sheets, point 0 will move only to
point 02 . This constraint is equivalent to bringing point 0 back from position 01 to

position 02 by means of horizontal force H.

The horizontal and vertical components of the displacement 61_02 due to H are

given by equations (11) and (16), respectively.

3
Hh
H c H
5 = B (11)
y EcIc y
3
Hh
H _ ¢ H
82 =FT Bz (16)
ce

The horizontal component, gy , of the displacement 662 is due to the compression
(neglecting buckling) of the face sheets, and can be written

_._Hp

y ZtSEc

(64)

18




where ts is the thickness of the face sheets. From the relation

~ _F _H
5 =sF -8
y =% "% (65)

it is possible to express H in terms of F with the aid of equations (27) and (11) as
follows:.

BF 1
H=F—% — (66)
B pc
;yl+—_3 i
2t h° B
scy

The vertical component, 32 , of the displacement 0—62 is given by

z

H

_oF _
—82 62 67

which, with reference to equations (21) and (16), becomes

N th . BI; Bl )
5 _= B 1- - = — (68)
z EcIc z BH BF pIc
y "z 1 +————3 T
2t h" B
scy
Using equations (19), (24), and (30), the modulus of elasticity Ez is then
given by
F
E = P
E,= - (69)
_Z
hc
E
= z 1 (70)
" VyzVzy pl
1+ —5p
2t h° B
scy

indicating that the stiffness of the corrugated core in the z-direction is greatly
enhanced when the core is bonded to the face sheets.

19



CORRUGATED CORE BENDING STIFFNESS

The bending stiffness in ‘the x-direction of the SPF/DB corrugated sandwich
core may be written

D, =E], ‘ (71)
where
D.x' bending stiffness in the x-direction per unit width of a beam cut from the
SPF/DB corrugated sandwich core
T moment of inertia taken about the horizontal centroidal axis of the

¢ corrugation cross section per unit width of the corrugation cross section
parallel to the yz-plane, or

3 2 2
ht t t 3 t
T: c ¢ .]_'._f__f_‘ 1+l_f; +g.c_i.._ sin29+l_c_coSze
c p 4hct 3h2 3h3 4d2
¢ c c
r|le _Rr® R R
+—|5-2—% sin®-—(2-3-—1)(0 - sin 0) (72)
h |2 2 h h
c hC c c

The bending stiffness in the y-direction of the SPF/DB corrugated core is very
small and is of the order of EcIi'

NUMERICAL RESULTS

In obtaining the numerical values for the effective elastic constants of the
SPF/DB corrugated core, it was assumed that R was equal to tf and that the

corrugated core material was a titanium alloy 6A1-4V having the following physical
properties:

E =E; =1.1X 1011 N/m? (16 x 108 psi)

G=Gp =4.3X 100 N/m? (6.2 x 10° psi)

20



V. =V

c Ti=0'33

_ _ 3 .3
pc—pTi—4.47 gr/ecm” (0.16 1b/in")

where Pe is the density of the core material.

Figure 7 shows the variation of the corrugation angle, 6, with the thickness of
the diagonal segment, tC , after superplastic expansion. It is apparent that tc is

insensitive to changes in tf/hc

Figures 8 to 16 present graphs for evaluating the major effective elastic constants
for the SPF/DB corrugated core. The elastic constants are plotted against p/ hc’

with tf/hc and O as parameters. Envelopes of optimum points or envelopes of
limit points are also shown in the figures. These envelopes correspond to the case
when f= 0 (that is, triangular truss core).

Figure 8 shows that Ey is sensitive to the values of tf and 9, but relatively
insensitive to the change of p (or f), and that E'y is very small. This indicates that

the corrugated core has negligible stiffness in the y-direction.

Figure 9 shows that Ez is also very small, and is sensitive to the changes of both
tf and p, but is insensitive to the change of 6. For a given 6, Ez reaches its

maximum (or optimum) value at f = 0. As will be seen later, the lateral (that is,
y-direction) constraint provided by the face sheets will increase the value of Ez by

several orders of magnitude.

The shear modulus ny shown in figure 10 is also sensitive to 6. As is expected,

ny increases with increasing values of p (or ).

Figure 11 shows that Gyz is very sensitive to the values of p (or f). For a given
o, Gyz reaches maximum value at f = 0. Because of the steepness of the curves, a

slight increase of f above 0 drastically reduces the value of Gyz'

Figure 12 shows that sz decreases with increasing values of p (or f) and that

maximum value for a given 6 occurs when the corrugation degenerates into a
triangular truss core.

The value of Poisson ratio ny , shown in figure 13, is small. It is sensitive to

the values of tf and 6, and increases as p increases.
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Figure 14 shows the plots of Poisson ratios v_ _and v It is apparent that

yz zy’
Vyz is greater than unity. This is quite common in the truss type of structure,
which is not a continuum. For example, if a square truss is pulled diagonally into
a rhombic shape, the Poisson ratio will be greater than unity. Both vyz.and sz

are sensitive to both p and 0, but insensitive to the value of tf.

Figure 15 shows that the value of Poisson ratio Voz is also small. It is quite

sensitive to the change of tf and less sensitive to the values of p and 0.

Figure 16 presents graphs for evaluating the modulus of elasticity Ez. Because
of the constraint of the face sheets, Ez is several orders of magnitude larger than

Ez' Ez is sensitive to the change of p at low values of tf.

Figure 17 shows plots of the bending stiffness, D.x' , of the SPF/DB corrugated

Eh3

core. In the plots, Dx is normalized by DC = ——%E (bending stiffness per unit
width of the solid core with height hc) . For given values of 6 and ¢ £ the
triangular truss core has the lowest bending stiffness.

For comparison, corresponding graphs evaluating the elastic constants for

the honeycomb core are also presented (figs. 18 to 26) . All the elastic constants
have been normalized and may be used for any material, except for Gyz , ny , and

v_ _, which are for titanium only. For a material other than titanium, G_ _, v__ ,
xz yvz® Txy

G
. e 1. E"Ti v Y
and Vs (figs. 22, 24, and 26) must be multiplied by CF v and VNG

Ti VTi Ti

respectively.

COMPARISON WITH HONEYCOMB CORE

This section compares the stiffness of the SPF/DB titanium alloy corrugated
core with that of the honeycomb (aluminum or titanium) core when both types
of sandwich core have the same density.

Let ( )SP and ( )HC denote, respectively, the quantities associated with the

SPF/DB corrugated core and the honeycomb core. The densities, p, of these two
types of sandwich core may be written

'
Psp=\r | Pri (73)
¢/ sp
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t 2
[ ‘e
Pac = <ﬁ;> Pe N
HC

where Pe is the density of the honeycomb core material. From the condition
Psp = Pyc: equations (73) and (74) may be related to find the geometric
parameter t f/ hc for the SPF/DB core as follows:

t t ¢ p
Wi > - <_C_> _< (75)
<hc phc pTi

SP HC

A typical honeycomb core for application to high speed aircraft is character-
ized by the following geometric parameters:

tc=tf~R, 0 ~ 60° (76)
<i = 0.4053 )
¢ uc
<h£> — 1.5600 (78)
¢ Hc
t
<Fc-> =0.0147 (79)
¢’ uc
<h—p—> = 0.9825 (80)
¢uc

For the aluminum honeycomb core, the material properties are:

E,=E, =6.8948x 10" N/m® (10 x 10 psi)

1

G =G, =2.7579 X 1010 N/m? (4 x 10% psi)

c Al
chvAl =0.36

Py = P4y = 2.77 gr/em® (0.100 b/in®)
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Using the numerical values given above, equation (75) yields the following
geometric parameters for the SPF/DB corrugated core corresponding to

h

t
(—f;) = 0.0147. When the honeycomb core is aluminum,
c

HC

t
<h—f> = 0.0146 (81)
¢/ sp

When the honeycomb core is titanium,

t
<—f> = 0.02334 (82)

hc
SP

From figures 18, 21, and 23 the three major elastic constants for the honeycomb
core, Ex’ ny, and sz, may be replotted against tf/hc for 6 = 60° and p/hC =0.9825

(eq. (80)). This is shown in figure 27.
Likewise, from figures 16, 11, and 12, the optimum values of the corresponding
elastic constants for the SPF/DB corrugated core, Ez R Gyz , and sz, may be

replotted against tf/hc for 6 = 60° (fig. 28).

Because of the different orientations of the coordinate axes of the two types of
sandwich cores, Ex’ G, and sz (honeycomb core moduli) should be compared

xy _
respectively with their counterparts, Ez , Gyz , and sz (SPF/DB corrugated core
moduli) .

Because <Ex) is insensitive to the existence of the face sheets, it is used to

HC
compare With(F ) , which is insensitive to the change of thickness of the face sheets.

SP
Given that Ec =E

EC = ETi and GC = GT
comparisons between the elastic constants as shown in tables 1 and 2.

Al and Gc =G Al for the aluminum honeycomb core and that

; for the titanium honeycomb core, figures 27 and 28 allow the

From the tables, it becomes apparent that the stiffness in the sandwich thickness
direction of the SPF/DB corrugated core is lower than that of the honeycomb core
(aluminum or titanium). The transverse shear stiffness of the SPF/DB corrugated
core is greater than that of the honeycomb core.
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CONCLUDING REMARKS

In this report the formulae and related graphs are developed to evaluate the major
effective elastic constants for a superplastically formed/diffusion-bonded (SPF/DB)
corrugated sandwich core. Assuming uniform thickness of the corrugation leg, the
formulae were used to evaluate the effective elastic constants for a honeycomb sand-
wich core.

A comparison of the stiffness of the two types of sandwich core was made under
conditions of equal sandwich core density. It was found that the stiffness in the thick-
ness direction of the optimum SPF/DB corrugated core (that is, triangular truss core)
was lower than that of the honeycomb core, and that the former had a higher trans-
verse shear stiffness than the latter. Alternatively, for the same transverse shear
stiffness, the SPF/DB corrugated core had lower core density than the honeycomb
core, but its thickness stiffness was lower than that of the honeycomb core.

For the SPF/DB corrugated sandwich core, it was found that increasing the
length of the crest or trough increased the bending stiffness but reduced the
transverse shear stiffness.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, Calif., June 27, 1979
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TABLE 1.—COMPARISON BETWEEN ELASTIC CONSTANTS FOR
ALUMINUM HONEYCOMB CORE AND SPF/DB TITANIUM CORRUGATED CORE

[Pgp = Pyc!
Aluminum honeycomb core SPF/DB titanium corrugated core ) SP/ ) HC
! ¥i
hl=0.0147,e=60° L =0.0146,0 =60°, f=0 -
C
N 8., 2 - 8. ., 2
E_=14.4790 X 10° N/m E, =8.2737 X 10° N/m 0.57
2.1% 10° psi) (1.2 X 10° psi)
8., 2 8., 2
G. =2.4821X 10° N/m G,,, = 2.7358 X 10° N/m 1.10
3.6 X 10% psi) (3.968 X 10% psi)
G, =2.5924X 108 N/m2 G, =4.7022 X 10° N/m? 1.81
3.76 X 10 psi) (6.82 X 10% psi)

TABLE 2.—COMPARISON BETWEEN ELASTIC CONSTANTS FOR
TITANIUM HONEYCOMB CORE AND SPF/DB TITANIUM CORRUGATED CORE

lpsp = Pyl
Titanium honeycomb core SPF/DB titanium corrugated core ( )SP/( )HC
yi tf
L =0.0147, 0 = 60° =0.02334, 8 = 60°, f= 0 —
C C
= 23.1664 X 10 N/m? E, = 13.4586 X 10° N/m? 0.58
(3.36 X 10° psi) (1.9520 X 10° psi)
= 3.8473 X 10° N/m? Gy, = 4.5740X 10% N/m? 1.22
(5.58 X 10% psi) (6.8340 X 10% psi)
G, =4.0182X 10° N/m G, =7.5663x 10° N/m 1.88
(5.8280 X 10% psi) (1.0974 X 10° psi)
R )
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Figure 5. Geometry of honeycomb core sandwich plate.

£ 55
6y"1_| 5H Deformation
: LY / unconstrained
il 0™
= & T~
Z# 26 02 ‘\ \\\ I_EtS
I Z —= A i v ‘>yl
H 0 L
t
\ X Defor mation !
 constrained \
'\ Dbyfacesheets |
‘ i
|
|
|
|
|
|
I
i
|
t s
s T
o H
T
lf
I

Figure 6. Constrained deformation of
corrugation leg.



—-o-lﬁ

A4
C
0.08
0.07
3 0.06
0.05
0.04
| _ 0.03
.2
0.02
0.01
A
. | | | | | |
40 45 50 55 60 65 70

o, deg

Figure 7. Corrugation leg straight diagonal segment thickness versus
corrugation angle. R = tg.

31



10 " —
10_4;‘
107
E B
J L
E
¢ L
10_6 -
L 0.03%4, /
i 40
-7 Envelope of
10 = limit points
0.017770
10'8 | |
.2 4 1.2

p/hc

Figure 8. Modulus of elasticity Ey for SPF/DB
corrugated core. R = tg.

32



10

107

IIIIII—I

T

IIIIIII T

T

lllllll

Figure 8.

plhC

Concluded.

33



10 " —
|t
f
L — o,
hC
0.03
107
~0.02
E_Z -
E, B
40
10—
- 0.01
- 70
- BTN
i 60 \
55 \
B 50
L 45
40
107 l I R I [ I~ ]
.2 4 .6 .8 1.0 1.2 1.4 1.6
p/hC

Figure 9. Modulus of elasticity E, for SPF/DB corrugated core. R = tg.
z f

34




m
N

21070 ' L | [ R

.2 A4 .6 .8 1.0 1.2 1.4 1.6
p/hC

Figure 9. Concluded.

35



10 " —

Envelope of 70 0
= [imit points
0.03
0.01
10-3 L l - ,_1‘7,_ .Lﬁ_,f _I__ - l ,
.2 4 .6 .8 1.0 1.2 1.4 1.6
p/hC

Figure 10. Shear modulus Gxy for SPF/DB corrugated core.
R = tf.

36




10

10

Envelope of
limit points

0.04

0.02

I | I |

A4 .6 .8 1.0
p/hc

Figure 10. Concluded.

1.2 1.4 1.6

37



107

10

Figure 11,
titanium core.

38

TIIIITI‘I"

o
o O

[ TTTTTT

|
e
(=]
—

AN

I IIIII||

I IIIIIII

llllllll I

Shear modulus G

Envelope of optimum
points (f = 0)

for SPF/DB corrugated



10 " —
\
L N \ \
tf \ \ \ \
-2 — \ 1 A
10 © =N, \ \ \ \
— \ \ \ \
- 0.047 \ \ \ \ \
B Vol \ \ \
0.02 \ \ \ \ \\
- \ \ \ \ \ \
L ! \ \ \ \
\ \ \ \ \
\ \ \ \ \
- \ \ \
1072 | S TR T . \
= \ ' \ \ \
— \ \ \ N \\
- \ \ \
G » \ \ \
_LZ. — \ \ \
GC B \ \ \\ \\\
N \ \\\ \\
\
- \
10 4 — \ \\ \\ ~
= \ \\
B \ ~ X~
_ N A}
" N -
- N ~
~ ~
- N ~
-5
10 " =
-6
0 | 1 | |
.2 4 .6 .8 1.0
p/hc

Figure 1l. Continued.

1.2

Envelope of optimum
points (f = 0)

70

1.4 1.6

39



10

Pd
o
T fjllll] T

1

10

TIII!HI

I—FIIIHI

(T((Tﬂl

—
-

=

o O

(9]

oo

v~

Envelope of optimum
points {f = 0)

10

40

Figure 11.

1.0 1.2 1.4

Continued.




10

10

(*p]
IIIIIIl ! Illlllll

T

10

10

:'I,—o-
—

(=

KR °

Envelope of optimum
points (f = 0)

~ \ X hY
\ \
\ \ \\ \\
\ \ \ \ \
\ \ \ \ \ \
\ \ \ \ \ \
Yo\ ' \ \ A b
\ \ \ \ \ N N 9, deg
\ \ \\ \ \ \ N
\ \ \ N \
\ \\ \ \ \ \ 40
\ \ \ \ \
\ N \ N\ \\ \\ 40
\ N \ ~ ~
\ \ \ N ~ ~
\ \\ \\ \\ \\ \45
\ AN ~ ~ N
\ \\ AN N
\ >~
N \\ N S o 45\50
N ~ ~
~ >~ -~
N ~ ~55
\\\ \\\ 50
\\\\\ \\\\\\ 55\60
el = ~65
~ <. 60
~~70
65
70
4 .6 .8 | 1.0 1.2 1.4 1.6
h
P C

Figure 1l. Concluded.

41



10 " —
-
e
i 0.07
0.05
0.03
GZX -2
s 0
o - 0.01
B 60
n Enve.lope of . 75765
i optimum points
L 40 45
50
60 55
65
70
1073 | | | | | | !
.2 4 .6 .8 1.0 1.2 1.4 1.6
p/hc

Figure 12. Shear modulus G,y for SPF/DB corrugated
core. R = trg.

42



10 —
i o, deg
Envelope of
- limit points
10 5 — po
B t
vy L
c
L 0.02 70
10_6 —
- 0.0177g
107 | | | I | |
2 A4 .6 .8 1.0 1.2 1.4 1.6

p/hC

Figure 13. Poisson ratio ny for SPF/DB corrugated
COIree R = tfl

43



44

10

Figure 13.

I

.8

I

1.0
p/hC

Continued.

1.2

1.4

1.6



10
- 6, deg
B Envelope of e
limit points v
- 45 B
10 - e
. - -
_ h ////
- C -
0.08
Yy i
0.067¢
65
-5
10 - 0.04 70
B
—
1076 l | | l l | |
.2 4 .6 .8 1.0 1.2 1.4 1.6

p/ hc

Figure 13. Concluded.

45



46

yZ
or

zy

10

10—

Figure 14. Poisson ratios vyz and Vay for SPF/DB
corrugated core. R = tg.



10

XZ

3x10

Illll

0.01

Envelope of

limit points
B 65
= 55
- 45
40
, | l | | | I |
2 4 6 8 1.0 1.2 1.4 1.6

Figure 15. Poisson ratio v,, for SPF/DB
corrugated core. R = tg.



48

XZ

10" —
.
hc
. 0.08
10'3 — 0.06
- 0.04
10—4 - 0.02
- Envelope of
B limit points
10 | | | |
.2 4 .6 .8 1.0

p/ hC

Figure 15, Concluded.




nmINm'

10

10

10

10

10

10

10

| IIIIIII

t
_f
h
L. C
0.03 ™\ \% .
| " N \\ RNREN Envelope of optimum
- NN N T TS points (£ =0
0.01 T Y YN
. \\ \\ \ \ N \\ \\
| \ \ \ \ \
\ \ \ N \\ \
n Wy Y \ \ N\
NN N AN > \ o, deg
\ \ \ N
\ \ \ \ \ \
— \ \ \ \ \\ 40
- \ \ \ \ \
\ \ \ \ \
E \ \ \ \\ \\
\ \ \
L W\ W W \ \ \
- N N\ AN \\ N
"\ W W \ ~45
- \ \ N \
\ N \\ \ \
N . < N \\ ~
L AR N N ~50
- ~ N ~ AN
— ANRRY « O
— N < N
- NURAR 55
— ~N
- N 40
S\, N60
- \\
- NN
~70
— 45
- 50
L 55
60
= 65
- 70
I | I I | | |
2 4 .6 .8 1.0 1.2 1.4 1.6

p/ hc

Figure 16. Modulus of elasticity E, for
SPF/DB corrugated core. R = tre

49



50

10

10

10

(nall

PIN

10

107

10

-

=2

T TTTTIT
4

o
S Be

I Illllllo

T Illl|l|| T IIIIIT][

T lllllll

Envelope of optimum
T/ wints (f=0)

\Y \ N\ 3
\ \ N
\ e AR N
\ N <
\ \ \ \ \ \ ~
\ \ \ \ \\
ASRN N A} « 6, deg
\ \ \
\ \ \ \ R\ \
“\ N AN \ “) MO
\ \ \ \
\ \ \ \ \
A\ \ \ \ \
N\ \ \ \ N
\ \ \
\ \ \ N
\ \ \
N \ \ \ \ \
N \ \ \ N
~o\N \ \ 45
N N N N\ \
Y \ N 40
AN S N
\\ \\\ \\ \\ \50
N \\ AN
SoOoNG NRJ55
\\ \\ N
~ ~ ~ 45
‘\\\\\ 60
\‘65
~70
50
55
60
65
70
.6 .8 / 1.0 1.2 1.4 1.6
h
pC

Figure 16. Continued.



10

10

10

10

T

I]IIII|

T IIII]I]

l |
6 8

Figure 1l6.

Envelope of optimum
points (f = 0)

| |
1.0 1.2 1.4
p/h
c

Continued.

1.6

51



10

o N

10

107

52

—'t
- he
- Envelope of optimum
~0.08—= ST~ points (f = 0)
~0.06 AN ST
~ AN
- ~N N X By
\\ \\ N ‘\\
N\ N ~
- N \\\ \\ \\\ \\ ~ \\\\ 9, deg
= D\ \\ AN N \\ S o
\ AN
I N \) N\ \\ \40
\ N\ A\ N\
- \\ \\ \\ \\ \\f,o
N \\ N S AN \45
| \\\ \\\\\\ \\\
N
\\\\\\\\\\\45\50
= NN N 5055
C N 55\60
: e 65
60" ~70
~ 65
L | 1 | 0
.2 A .6 .8 1.0 1.2 1.4 1.6
p/h
o
Figure 16. Concluded.



3x10 —
P
107 -
i e, deg
70 50 45 40
D -t 65 /60 /5
X 1
D . h
c c
0.05
2 50 45
0 0m \
T Envelope of limit
B points (f = 0)
6 x 10'3 | l | l l | |
2 4 .6 .8 1.0 1.2 1.4 1.6
p/hc

Figure 17. Bending stiffness Dy for SPF/DB corrugated

sandwich core. R = tg; D, = Echg/12-

53



3%x10  —

60 50 45

65 55

\—Envelope of limit
points (f = 0)

-2 | [ | |
.2 4 .6 .8 1.0
p/hc

Figure 17. Continued.

54

1.2

1.4

1.6



3x10 r

-2

0.03

\—Envelope of limit
points (f = 0)

l | l I

10

.8 1.0 1.2 1.4
p/hC

Figure 17. Continued.

1.6

55



56

3x10_

10

<
>

10

Envelope of limit
0.04 points (f =0)

| | | l |

4 .6 .8 1.0 1.2
p/hC

Figure 17. Concluded.

1.4 1.6




6x10 ° —
i
hC
~ 0.02
o, deg
i \_‘%45
~—55
E 6065
X
e 70
c
— 0.01
Envelope of
optimum points
45
55
7065
-2 | | | | | | |
10
.2 4 .6 .8 1.0 1.2 1.4
p/h
c
Figure 18. Modulus of elasticity E, for honeycomb
core. R = to = tr.

a7



58

2x10 " —
Y
hC
0.07
0 0.05
e L
x
E
C —
L 0.03
3x107 | / | |
2 4 6 8 1.0

Figure 18. Continued.

Envelope of
optimum points

8, deg




2x10

3x10
.2

0.06 40

0.04

Envelope of 70
optimum points

4 .6 .8 1.0 1.2 1.4
p/hC

Figure 18. Concluded.



10

|
—

T
S o7l
%
B
O Ul S
Ul Ut i

T TTTT]

e

()

i

%
S &

I

10

m
c:3|'~<'-'.1
i
ul
T
o
=
vy
o\ |
ol (&
o\
S I&

IIIIIII
-
o

10‘6 Envelope of
optimum points

Illllll

50 o5
0.0 : 706
= | I TR (R IR J
2 4 6 8 1.0 1.2 1.4 1.6

mhc

Figure 19. Modulus of elasticity Ey for honeycomb
core. R = t, = tg.

60



10

10

10

10

|IIII||

IIIIII]*

||IIII| T

T

Tm 65
. 255
. — 30 65
Envelope of
optimum points
40 45
o
0.02
=0 65
I | I I | I i
4 .6 .8 1.0 1.2 1.4 1.6

p/hC

Figure 19. Concluded.

61



IOI:_

10

—

10

IN
T

m

107

llIIIIl

f

10

T

T

07 I | I I I I J
.2 4 .6 .8 1.0 1.2 1.4 1.6
p/hc

Figure 20. Modulus of elasticity E, for honeycomb core. R = t, = tg.

62



rnIN

10

10

1074

10

10

50

I||I|I|

45

5

50
. 40
5 45
50 40
45
40
55
50
45
4\
| | | |

Illlll] I

T

.2 4 .6 .8 1.0 1.2 1.4 1.6

p/hc

Figure 20. Concluded.

63



10

-
5 L
Xy
Ge
102 0.03
I Envelope of
o limit points %ﬁ
= @55
R 7065
0.01 . .
.2 4 .6 .8 1.0 1.2 1.4 1.6
whc

Figure 21. Shear modulus Gxy for honeycomb
core. R = tg = tg.

64



Envelope of
limit points

1.0

p/hc

Figure 21. Concluded.




10

t Envelope of
optimum points

°l
I [Illlllw T T TTTTT]

I

//

T

I

10" =
- v =0.33
C
) I | | | |
.2 4 6 8 1.0 1.2 1.4
p/h
Figure 22. Shear modulus Gy, for honeycomb core.
R = tC’ = tfo

66

65

60

55
50

40




10

10

10

10

- tf Envelope of
- optimum points
C P |
S NBRANVA
0.02 \
B o, deg
i 70
- | 6
- 60
70
B 55
50
| 45
- 40
- 65
N 60
i 55
~ v =0.33 50
¢ 45
| | | | | 0 |
2 A 6 .8 1.0 1.2 1.4 1.6
p/h
c
Figure 22. Continued.



68

10

%E 107
C

107

107

_f Envelope of
h optimum points

| I I | | l |

A .6 .8 1.0 1.2 1.4 1.6
p/hc

Figure 22. Continued.



tf Envelope of
10_1 — E optlmum points
- 0.08
. 0.06
B e, deg
G
yz o072 - 70
G -
¢ -
B 10
B 65
i 60 65
i 55
- 20
10° 7560
C 5540
B 50
B 45
L 40
~ v =0.33
10 | | I I | | N
.2 4 .6 .8 1.0 1.2 1.4 1.6
plhc

Figure 22. Concluded.

69



2x10l— ¢
0.07
0.05
0! -
= 0.03
0.01
2 Envelope of 60 50
10 B optimum points \70 65
B 40 15
50
22 60
~—065
.2 4 .6 .8 1.0 1.2 1.4
p/hC

Figure 23. Shear modulus Ggzy for honeycomb
cores. R = t, = tr.



3x10  — t

10 " —

L 0.02

Envelope of
optimum points 70

10" —

- 17
ox1t | | | | | Mo

4 .6 .8 1.0 1.2 1.4 1.6
p/hc

Figure 23. Concluded.

71



72

45
Envelope of 50

10-5 — limit points 55

B 60

i 65

~  0.01 ¢

VC=0.33

ot — 1L | 1 | |

.2 4 .6 .8 1.0 1.2 1.4

p/hC

Figure 24. Poisson ratio Vyy for honeycomb
cores R = t, = tg.

1.6



10

10

N

i lTI]

Envelope of 2
limit points 25
60
65
70
0.02 Vc=0‘33

L b | | I _ |
4 6 8 1.0 1.2 1.4 1.6

p/h

Figure 24. Concluded.

73



L
- A Z

y
y
40
55
45
\ N
yz Envelope of \ '0\\‘\\

v 20
or 1 optimum points " SN
vy L /\M“s\\
i 45
40
107 | |
1.4 1.6

Figure 25. Poisson ratios Vyz and Vay for
honeycomb core. R = t, = tr.

74



10

10

XZ

10

I ITTI

—

-6
2 x 10 P

55

Envelope of
optimum points

uc=0.33
L I ) | | [
4 .6 .8 1.0 1.2 1.4 1.6

p/hc

Figure 26. Poisson ratio V,, for honeycomb core. R = t, = tg.

75



2x10 “ [
tf 0,
h de
-2 hC :
. 0.05
70
0.03 70
-3
107 —
Via i
B 55
Envelope of
optimum points
104
- v =0.33
- c
s 0 - 1 ] |
4x10° 5 4 6 8 1.0
p/hC

Figure 26. Continued.

76



2x10° — b o
hC deg
0.08 70
1072 —
B 0.06
i 70
0.04
~ 70
3
10
Yyz i
B 55
B Envelope of
L optimum points
107
i V.= 0.33
-5 | | I | | I
4x107 5 4 6 8 1.0 1.2 1.4

p/hc

Figure 26. Concluded.



78

2x10 " —

Elastic
constants

3 | | I I | I |
.01 .02 .03 .04 .05 .06 07 .08

3x10

Figure 27. Variations of elastic constants with tg/h. for
honeycomb core. p/h, = 0.9825; 6 = 60°; R = to = tge.



10 * —

0.02334

Elastic
constants

1.22 x 107

5 ] 1.10
102 = 1.07

7.50 x 107"

6.40

\ T

— Psp =Py for aluminum honeycomb

- //pSP = pyyc for titanium honeycomb

.01 .02 .03 .04 .05 .06 .07 .08

Figure 28. Variations of elastic constants with tf/hc for
SPF/DB corrugated sandwich core. f = 0; 6 = 60°; R = tre

79



1. Report No. 2. Government Accession No. ’ 3. Recipient’s Catalog No.
NASA TP-1562

4. Title and Subtitle 1 5. Report Date
ELASTIC CONSTANTS FOR SUPERPLASTICALLY May 1980
FORMED /DIFFUSION-BONDED CORRUGATED SANDWICH CORE 6. Performing Organization Code

7. Author(s} T - 8. Performing Organization Report N‘o; i
William L. Ko H-1094

10. Work Unit No.

9. Performing Organization Name and Address

NASA Dryden Flight Research Center
P.O. Box 273 11. Contract or Grant No.
Edwards, California 93523

13. Type of Report anrci VPeriodr Covered

12. Sponsoring Agency Name and Address Technical Paper

National Aeronautics and Space Administration
Washington, D.C. 20546

t14. Sponsoring Agenc}: Code

15. Suppiementary Notes

This report is an expanded version of "Elastic Constants for Superplastically Formed/Diffusion-
Bonded Sandwich Structures" by the same author (AIAA Paper No. 79-~0756).

16. Abstract

This paper presents formulae and associated graphs for evaluating the
effective elastic constants for a superplastically formed/diffusion-bonded
(SPF/DB) corrugated sandwich core.

The results were used in the comparison of structural stiffnesses of the
above sandwich core and a honeycomb core under conditions of equal sand-
wich core density .

It was found that the stiffness in the thickness direction of the optimum
SPF/DB corrugated core (that is, triangular truss core) was lower than
that of the honeycomb core, and that the former had higher transverse shear
stiffness than the latter.

17. Key Words (Suggested by Author(s)} 18. Distribution Statement
Stiffness Unclassified—~Unlimited
Structural properties

Category: 39
19, Security Classif. {of this report) 20. Security Classif. {of this page) 21. No. of Pages 22. Price”
Unclassified

Unclassified 83 $4.75

*For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-lLangley, 1980

]



National Aeronautics and THIRD-CLASS BULK RATE Pos?age and Fees P?id
Space Administration gl:;::zn/ii!?n?;?;?:::g: end
. NASA-451
Washington, D.C.
20546 ;
Official Business ‘
Penalty for Private Use, $300 ;
4
1 1 10,D, 051080 S00903DS . i
DEPT OF THE AIR FORCE b ;
AF WEAPONS LABORATORY i !
ATTNz: TECHNICAL LIBRARY {SUL) -
KIRTLAND AFB NM 87117 . 3
i‘
NMA POSTMASTER: If Undeliverable (Section 158
Postal Manual) Do Not Return .‘
%

3 ?QE:@’L‘«’MM!JH&%%& S {{‘ " § é"ﬁ;’ﬁ‘ ‘_..,;? % e

o

. .
P Sl

airarsaidiabbingg

L

SR

S bl
AN




